

C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences and Life Sciences

Course: Bachelor of Science(Microbiology)

Semester: I

Subject Code: MIM202 -1C Subject Name: Bacteriology

	hour				Teaching hours/ Week			Evaluation Scheme/ Semester									
Sr	Credi		Credi	Theory			Tutorial / Practical										
No	Categor	t Code	Subject Name	T h	Tu	Pr	t hours			Semester Internal Assessment		End Semester Exams		Total			
									Ma	Marks	Mar	Duratio	Mark	Duratio	Mark	Duratio	
									rks		ks	n	S	n	S	n	
2	IMAIOR	MIM2 02-1C	Bacteriology	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM:

- Acquaint the basic concept of structure of cell
- Basic concepts of organelles and their function
- Gain a knowledge about bacterial growth and reproduction

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT				
Ι	 CELL STRUCTURE AND ORGANIZATION: Cell Size, Shape and Arrangement. External Cell Surface Structures: Glycocalyx (Capsule and Slime Layer), S Layer, Flagella, Endoflagella, Fimbriae and Pili. Cell-Wall: Detailed Structure and Composition of Cell Wall of Eubacterial (Gram-Positive and Gram Negative) And Archaea. Mechanism Of Gram and Acid-Fast Staining, Effect of Antibiotics and Enzymes on The Cell Wall and Formation of Spheroplasts, Protoplasts And L-Forms. Cell Membrane: Structure, Functions and Chemical Composition of Eubacterial and Archaeal Cell Membranes. Cytoplasm: Ribosomes, Mesosomes, Inclusion Bodies (PHB, Polyphosphate Granules, Sulphur Globules, Cyanophycin, Gas Vacuoles and Magnetosomes), Microcompartments (Carboxysomes), Nucleoid, Chromosome and Plasmids. Endospore: Structure, Formation, Stages of Sporulation and Germination of Endospore 	12			
II	 BACTERIOLOGICAL TECHNIQUES: Pure Culture Isolation: Streaking, Serial Dilution and Plating Methods. Cultivation, Maintenance and Preservation/Stocking of Pure Cultures. Culture Collection Centres. Cultivation Of Anaerobic Bacteria and An Overview of 	10			

	Accessing Non-Culturable Bacteria. Bright Field Microscopy: Principle and						
	Functions of Compound Microscope. Concept Of Resolving Power and						
	Magnification						
	BACTERIAL NUTRITION:						
	• Nutritional requirements in bacteria and nutritional categories. Culture media:						
III	components of media, natural and synthetic media, chemically defined media,	10					
	complex media, selective, differential, indicator, enriched and enrichment						
	media.						
	REPRODUCTION AND GROWTH:						
IV	 Asexual methods of reproduction, phases of growth curve in batch culture, 	13					
	generation time and growth rate.						

Course Outline for Practical

SR. NO	COURSE CONTENT								
1	Introduction of aseptic techniques: Methods of bacterial control: Mechanical(filtration); Physical (Heat, Radiation); Chemical (Alcohol)								
2	Preparation of different media: Synthetic Media (BG11), Complex media (Nutrio Agar, MacConkey agar).								
3	Isolation of pure cultures of bacteria by Quadrant streaking method.								
4	Enumeration of bacteria by CFU count using spread plate method/pour plate method.								
5	To observe size, shape and arrangement of given bacterial sample using simple and negative staining.	30							
6	To differentiate between different types of bacteria using differential staining methods: Gram staining, Capsule staining, Spore staining, Acid fast staining (Permanent slides)								
7	Demonstration of motility by hanging drop method.								
8	Temporary mount preparation of Rhizopus, saccharomyces, aspergillus to study thallus organization and asexual reproductive structures.								

TEACHING METHODOLOGY:

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME:

- At the end of this course the students would have sufficient knowledge of bacteria.
- Obtain the knowledge about growth and reproduction of bacteria.
- Understanding the bacterial nutrition and different culture media.
- To gain a knowledge about an application of microorganism in different field.
- Learn different bacteriological technique for bacterial growth.
- To understand the working system of various microscope

Arrangement of lectures duration and practical session as per defined credit numbers:

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit – 1	12					
Unit – 2	10	30	3	1	45+30	3+1
Unit – 3	10	30	3	1	43+30	3+1
Unit – 4	13					
TOTAL	45	30	3	1	75	4

Evaluation:

Theory Marks	Practical Marks	Total Marks		
75	25	100		

REFERNCE BOOKS:

Craig, J.R., Vaughan. D.J. & Skinner. B.J. 1996. Resources of the Earth: Origin, Use, and Environmental Impacts (2nd edition). Prentice Hall, New Jersey

Freeman, A.M. 2001. Measures of value and Resources: Resources for the Future. Washington DC.

Freeman, A.M. 2003. Millennium Ecosystem Assessment: Conceptual Framework. Island Press.

Ginley, D.S. & Cahen, D. 2011. Fundamentals of Materials for Energy and Environmental Sustainability. Cambridge University Press

Klee, G.A. 1991. Conservation of Natural Resources. Prentice Hall Publication.